multiple-precision - definizione. Che cos'è multiple-precision
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è multiple-precision - definizione

CALCULATIONS WHERE NUMBERS' PRECISION IS ONLY LIMITED BY COMPUTER MEMORY
Bignum; Infinite precision arithmetic; Bigint; Arbitrary precision; Arbitrary precision arithmetic; Bignums; Infinite-precision arithmetic; Bigfloat; Multi-length arithmetic; BigNum; Arbitrary-precision; Multi-precision; Multiple precision integer; Bignum arithmetic; Java.math.BigInteger; Java.math.BigDecimal; String math; Multiprecision; Big num; Infinite precision; Multiprecision arithmetic

Arbitrary-precision arithmetic         
In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are limited only by the available memory of the host system. This contrasts with the faster fixed-precision arithmetic found in most arithmetic logic unit (ALU) hardware, which typically offers between 8 and 64 bits of precision.
bignum         
<programming> /big'nuhm/ (Originally from MIT MacLISP) A multiple-precision computer representation for very large integers. Most computer languages provide a type of data called "integer", but such computer integers are usually limited in size; usually they must be smaller than 2^31 (2,147,483,648) or (on a bitty box) 2^15 (32,768). If you want to work with numbers larger than that, you have to use floating-point numbers, which are usually accurate to only six or seven decimal places. Computer languages that provide bignums can perform exact calculations on very large numbers, such as 1000! (the factorial of 1000, which is 1000 times 999 times 998 times ... times 2 times 1). For example, this value for 1000! was computed by the MacLISP system using bignums: 40238726007709377354370243392300398571937486421071 46325437999104299385123986290205920442084869694048 00479988610197196058631666872994808558901323829669 94459099742450408707375991882362772718873251977950 59509952761208749754624970436014182780946464962910 56393887437886487337119181045825783647849977012476 63288983595573543251318532395846307555740911426241 74743493475534286465766116677973966688202912073791 43853719588249808126867838374559731746136085379534 52422158659320192809087829730843139284440328123155 86110369768013573042161687476096758713483120254785 89320767169132448426236131412508780208000261683151 02734182797770478463586817016436502415369139828126 48102130927612448963599287051149649754199093422215 66832572080821333186116811553615836546984046708975 60290095053761647584772842188967964624494516076535 34081989013854424879849599533191017233555566021394 50399736280750137837615307127761926849034352625200 01588853514733161170210396817592151090778801939317 81141945452572238655414610628921879602238389714760 88506276862967146674697562911234082439208160153780 88989396451826324367161676217916890977991190375403 12746222899880051954444142820121873617459926429565 81746628302955570299024324153181617210465832036786 90611726015878352075151628422554026517048330422614 39742869330616908979684825901254583271682264580665 26769958652682272807075781391858178889652208164348 34482599326604336766017699961283186078838615027946 59551311565520360939881806121385586003014356945272 24206344631797460594682573103790084024432438465657 24501440282188525247093519062092902313649327349756 55139587205596542287497740114133469627154228458623 77387538230483865688976461927383814900140767310446 64025989949022222176590433990188601856652648506179 97023561938970178600408118897299183110211712298459 01641921068884387121855646124960798722908519296819 37238864261483965738229112312502418664935314397013 74285319266498753372189406942814341185201580141233 44828015051399694290153483077644569099073152433278 28826986460278986432113908350621709500259738986355 42771967428222487575867657523442202075736305694988 25087968928162753848863396909959826280956121450994 87170124451646126037902930912088908694202851064018 21543994571568059418727489980942547421735824010636 77404595741785160829230135358081840096996372524230 56085590370062427124341690900415369010593398383577 79394109700277534720000000000000000000000000000000 00000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000 000000000000000000. [Jargon File] (1996-06-27)
Precision agriculture         
  • date=30 January 2001
}}</ref>
  • Precision Agriculture NDVI 4 cm / pixel GSD
  • [[Pteryx UAV]], a civilian UAV for aerial photography and photo mapping with roll-stabilised camera head
  • [[NDVI]] image taken with small aerial system Stardust II in one flight (299 images mosaic)
  • Yara]] ''N-Sensor ALS'' mounted on a tractor's canopy – a system that records light reflection of crops, calculates fertilisation recommendations and then varies the amount of fertilizer spread
FARMING MANAGEMENT STRATEGY
Precision farming; Precision Farming; Site Specific Crop Management (SSCM); High-density soil sampling; Smart farming; Smart farm; Precision biology
Precision agriculture (PA) is a farming management concept based on observing, measuring and responding to inter and intra-field variability in crops. First conceptual work on PA and practical applications go back in the late 1980s.

Wikipedia

Arbitrary-precision arithmetic

In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are limited only by the available memory of the host system. This contrasts with the faster fixed-precision arithmetic found in most arithmetic logic unit (ALU) hardware, which typically offers between 8 and 64 bits of precision.

Several modern programming languages have built-in support for bignums, and others have libraries available for arbitrary-precision integer and floating-point math. Rather than storing values as a fixed number of bits related to the size of the processor register, these implementations typically use variable-length arrays of digits.

Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required. It should not be confused with the symbolic computation provided by many computer algebra systems, which represent numbers by expressions such as π·sin(2), and can thus represent any computable number with infinite precision.